货号 | 4499T |
同种亚型 | Rabbit IgG |
反应种属 | Human,Mouse,Rat,Monkey, |
来源宿主 | Rabbit IgG |
应用 | WB, IHC-P , F , IF-IC |
目标/特异性 | Histone H3 (D1H2) XP® Rabbit mAb detects endogenous levels of total histone H3 protein. This antibody does not cross-react with other histones. |
使用方法 | WB(1:2000) IHC-P (1:400) F (1:50) IF-IC (1:400) |
供应商 | CST |
灵敏度 | Endogenous |
背景 | Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11). |
存放说明 | -20C |
计算分子量 | 17 |
参考文献 | 1 . Workman, J.L. and Kingston, R.E. (1998) Annu Rev Biochem 67, 545-79. 2 . Hansen, J.C. et al. (1998) Biochemistry 37, 17637-41. 3 . Strahl, B.D. and Allis, C.D. (2000) Nature 403, 41-5. 4 . Cheung, P. et al. (2000) Cell 103, 263-71. 5 . Bernstein, B.E. and Schreiber, S.L. (2002) Chem Biol 9, 1167-73. 6 . Jaskelioff, M. and Peterson, C.L. (2003) Nat Cell Biol 5, 395-9. 7 . Thorne, A.W. et al. (1990) Eur J Biochem 193, 701-13. 8 . Hendzel, M.J. et al. (1997) Chromosoma 106, 348-60. 9 . Goto, H. et al. (1999) J Biol Chem 274, 25543-9. 10 . Preuss, U. et al. (2003) Nucleic Acids Res 31, 878-85. 11 . Dai J et al. (2005) Genes Dev 19, 472–88 |
Flow cytometric analysis of human peripheral blood lymphocytes using Histone H3 (D1H2) XP® Rabbit mAb (blue) compared to Rabbit (DA1E) mAb IgG XP® Isotype Control #3900 (red). Anti-rabbit IgG (H+L), F(ab)2 Fragment (Alexa Fluor® 647 Conjugate) #4414 was used as a secondary antibody. | |
Confocal immunofluorescent analysis of HeLa cells using Histone H3 (D1H2) XP® Rabbit mAb (green) and β-Tubulin (9F3) Rabbit mAb (Alexa Fluor® 555 Conjugate) #2116 (red). 使用Histone H3 (D1H2) XP® Rabbit mAb 兔单抗(绿色)和β-Tubulin (9F3) Rabbit mAb 兔单抗(Alexa Fluor® 555 Conjugate) #2116 (红色)标记,共聚焦免疫荧光分析HeLa细胞。 | |
Western blot analysis of extracts from various cell lines using Histone H3 (D1H2) XP® Rabbit mAb. 使用Histone H3 (D1H2) XP® Rabbit mAb兔单抗,免疫印迹(Western blot)分析不同细胞中Histone H3 (D1H2)的蛋白水平。 | |
Immunohistochemical analysis of paraffin-embedded human breast carcinoma using Histone H3 (D1H2) XP® Rabbit mAb. 使用Histone H3 (D1H2) XP® Rabbit mAb兔单抗,免疫组化分析人源乳腺癌组织石蜡切片。 |